New Results on Cache-Aided One-to-Many Compression and Communication

Michèle Wigger

jointly with B. Geiger, R. Timo, S. Saeedi Bidokhti

GdR ISIS Workshop
Recent Advances in Network Information Theory and Coding Theory
INSA Lyon

24 November 2015
Content Delivery Networks

- Mirror sites for large, frequently used programs such as software, media, etc.

Let’s bring caches even closer to users
Promising Solution: Distribute Caches at Various Locations in Network

- Can cache at main BSs, picoBSs, femtoBSs, or directly at end users
- Caches accessed with short delay and without loading parts of network

Promising Solution: Distribute Caches at Various Locations in Network

- Can cache at main BSs, picoBSs, femtoBSs, or directly at end users
- Caches accessed with short delay and without loading parts of network

Promising Solution: Distribute Caches at Various Locations in Network

- Can cache at main BSs, picoBSs, femtoBSs, or directly at end users
- Caches accessed with short delay and without loading parts of network

Promising Solution: Distribute Caches at Various Locations in Network

- Can cache at main BSs, picoBSs, femtoBSs, or directly at end users
- Caches accessed with short delay and without loading parts of network

Wigger — New Results on Cache-Aided One-to-Many Compression and Communication
Promising Solution: Distribute Caches at Various Locations in Network

- Can cache at main BSs, picoBSs, femtoBSs, or directly at end users
- Caches accessed with short delay and without loading parts of network

Wigger — New Results on Cache-Aided One-to-Many Compression and Communication
Questions to Address for Cache-Aided Networks

- Where to put caches? Sizes of caches?
- What to store in the caches?
- How to communicate in presence of cached data?
One-To-Many Communication with Caches at Receivers

- Communication in two phases → cache filled independently of delivery
- No file popularities

Outlook on this Talk

Part 1: Observation on Maddah-Ali & Niesen’s setup and results

Part 2: Delivery over noisy broadcast channel:
 - joint source channel coding \rightarrow piggyback coding

Part 3: Correlated files \rightarrow rate-distortion setup:
 - Wyner and Gács-Körner common information
 - Gray-Wyner source coding problem
 - Virtual binning scheme for two users
Part 1: Maddhah-Ali & Niesen Source Coding Setup

Library: IID Files W_1, W_2, \ldots, W_D of $n\rho$ bits (no popularities)

Communication in two phases:
Part 1: Maddhah-Ali & Niesen Source Coding Setup

Library: IID Files W_1, W_2, \ldots, W_D of $n \rho$ bits

Communication in two phases:

- **Placement phase**: Tx fills caches without knowing demands d_1, \ldots, d_K
Part 1: Maddhah-Ali & Niesen Source Coding Setup

Library: IID Files W_1, W_2, \ldots, W_D of $n \rho$ bits

\[T_x \]

demands d_1, d_2, d_3, d_4, d_5

\[nR \text{ bits about } W_{d_1}, W_{d_2}, W_{d_3}, W_{d_4}, W_{d_5} \]

\[\hat{W}_{d_1} \xrightarrow{\text{Rx 1}} \hat{W}_{d_5} \]

\[\text{cache contents: } nM \text{ bits about messages } W_1, \ldots, W_D \]

Communication in two phases:

- **Placement phase:** T_x fills caches without knowing demands d_1, \ldots, d_K

- **Delivery phase:** T_x conveys W_{d_1}, \ldots, W_{d_K} to Rxs 1, \ldots, K.
Part 1: Maddhah-Ali & Niesen Source Coding Setup

Library: IID Files W_1, W_2, \ldots, W_D of $n \rho$ bits

Demands d_1, d_2, d_3, d_4, d_5

nR bits about $W_{d_1}, W_{d_2}, W_{d_3}, W_{d_4}, W_{d_5}$

Rx 1 $\rightarrow \hat{W}_{d_1}$

Rx 2

Rx 3

Rx 4

Rx 5 $\rightarrow \hat{W}_{d_5}$

Cache contents: nM bits about messages W_1, \ldots, W_D

Rates-Memory Tradeoff

For which triples (ρ, R, M) is error-free data transmission possible?
Naive Uncoded Caching for $K = 2$ Receivers

Library: Files W_1, W_2, \ldots, W_D of $n \rho$ bits each

- Split $W_d = (W_d^{(c)}, W_d^{(u)})$ of length $(\frac{M}{D}n, (\rho - \frac{M}{D})n)$ bits
Naive Uncoded Caching for $K = 2$ Receivers

Library: Files W_1, W_2, \ldots, W_D of $n\rho$ bits each

Rates-Memory Trade-Off

Reconstruction is possible, if $R \geq 2 \left(\rho - \frac{M}{D} \right)$
Coded caching for $K = 2$ Receivers [Maddah-Ali&Niesen 2013]

Library: Files W_1, W_2, \ldots, W_D of $n\rho$ bits each

\[
\hat{W}_{d_1}
\]

\[
\hat{W}_{d_2}
\]

\[
\begin{align*}
\text{cache contents: } nM \text{ bits about messages } W_1, \ldots, W_D
\end{align*}
\]

- Split $W_d = (W_d^{(c_1)}, W_d^{(c_2)}, W_d^{(u)})$ of length $(\frac{M}{D}n, \frac{M}{D}n, (\rho - 2 \frac{M}{D})n)$ bits
Coded caching for $K = 2$ Receivers [Maddah-Ali&Niesen 2013]

Library: Files W_1, W_2, \ldots, W_D of $n\rho$ bits each

![Diagram of coded caching]

- **Rx 1:** \hat{W}_{d_1}
 - $W_{d_1}^{(c1)}$
 - \vdots
 - $W_{d_1}^{(c1)}$
 - $W_{d_1}^{(u)}$

- **Rx 2:** \hat{W}_{d_2}
 - $W_1^{(c2)}$
 - \vdots
 - $W_D^{(c2)}$

Cache contents: nM bits about messages W_1, \ldots, W_D

- Split $W_d = (W_d^{(c1)}, W_d^{(c2)}, W_d^{(u)})$ of length $(\frac{M}{D} n, \frac{M}{D} n, (\rho - 2 \frac{M}{D}) n)$ bits

Rates-Memory Trade-Off

Reconstruction possible, if $R = 2 \left(\rho - \frac{M}{D} \right) - \frac{M}{D}$
Rate-Memory Curve for $\rho = 1$ and $K = D = 2$

- Coded caching gives right-star
- Can get left-star using symmetry arguments!
Expanded Demands Model & Cache-Rate Symmetry

- Demands-A: Rx1 wants W_1 and Rx2 W_2
- Demands-B: Rx1 wants W_2 and Rx2 W_1
- Demands-C: Rx1 wants W_1 and Rx2 W_1
- Demands-D: Rx1 wants W_2 and Rx2 W_2
Expanded Demands Model & Cache-Rate Symmetry

Demands-A: Rx1 wants W_1 and Rx2 W_2

Demands-B: Rx1 wants W_2 and Rx2 W_1

Demands-C: Rx1 wants W_1 and Rx2 W_1

Demands-D: Rx1 wants W_2 and Rx2 W_2

No assumption on knowledge of demands anymore!
Expanded Demands Model & Cache-Rate Symmetry

Library:
\(W_1, W_2\)

Transmitter

\[
\begin{align*}
W_1^{(1B)} & \quad \hat{W}_1^{(1A)} & \quad \hat{W}_2^{(1B)} \\
W_2^{(2B)} & \quad \hat{W}_2^{(2A)} & \quad \hat{W}_1^{(1A)} & \quad \hat{W}_2^{(1B)}
\end{align*}
\]

Duality:
\(r_1 \leftrightarrow m_1\)
\(r_2 \leftrightarrow m_2\)
Dec. Rx1B \(\leftrightarrow\) Dec. Rx2A

- Demands-A: Rx1 wants \(W_1\) and Rx2 \(W_2\)
- Demands-B: Rx1 wants \(W_2\) and Rx2 \(W_1\)

\(\rightarrow\) If \((R, M)\) achievable, also \((\tilde{R} = M, \tilde{M} = R)\) achievable!
Dualities between Rate R and Memory M

- General duality for $K = D = 2$ and $M \geq 1$:

$$(R, \rho, M) \text{ achievable } \implies (\tilde{R} = M, \rho, \tilde{M} = R) \text{ achievable}$$

(R, ρ, M) tradeoff already characterized by Maddah-Ali and Niesen

- For more general K, D?
 - need more involved dualities
 - (R, ρ, M) tradeoff unknown

Communication links from BS to mobiles are noisy!

New coding elements? New cache designs?

[12] A. Ghorbel, M. Kobayashi, S. Yang, “Cache-enabled broadcast packet erasure channels with state feedback”.

Part 2: Delivery over Noisy Broadcast Channel
Caching over Packet Erasure BCs

Library: Files W_1, W_2, \ldots, W_D of $n\rho$ bits each (no popularities)

Packet Erasure Broadcast Channel

$X^n = (X_1, \ldots, X_n) \in \mathcal{F}^n$

Cache contents: arbitrary functions of messages W_1, \ldots, W_D

- Receiver k gets erasure with probability δ_k where $\delta_1 \geq \delta_2 \geq \ldots \geq \delta_K$

 $Y_k^n = (X_1, X_2, \Delta, X_4, \Delta, \ldots, X_{n-1}, \Delta)$

 \rightarrow fraction of Δs $\approx \delta_k$
Example: Asymmetric Caches and Separate Channel Coding

Library: Files W_1, W_2, \ldots, W_D of $n\rho$ bits each

Library: Files W_1, W_2, \ldots, W_D of $n\rho$ bits each

Packet Erasure Broadcast Channel

Split $W_d = (W_d^{(c1)}, W_d^{(u)})$ of rates $(2\frac{M}{D}, \rho - 2\frac{M}{D})$
Example: Asymmetric Caches and Separate Channel Coding

\[X^n = \begin{cases} W_{d_1}^{(u)} & \text{to Rx 1} \\ W_{d_2}^{(c_1)} & \text{to Rx 2} \\ W_{d_2}^{(u)} & \text{to Rx 2} \end{cases} \]

- Split \(W_d = (W_d^{(c_1)}, W_d^{(u)}) \) of rates \((2 \frac{M}{D}, \rho - 2 \frac{M}{D}) \)

Asymmetric Cache Assignment Can Help

\[p(\text{error}) \to 0 \text{ if: } \frac{\rho - 2 \frac{M}{D}}{F(1 - \delta_1)} + \frac{\rho}{F(1 - \delta_2)} \leq 1 \]

No Global Caching Gain
Example: Our Joint-Cache Channel Scheme for $K = 2$

Library: Files W_1, W_2, \ldots, W_D of $n\rho$ bits each

Packet Erasure Broadcast Channel

$X^n = W_{d_1}^{(u)} W_{d_2}^{(c1)} W_{d_2}^{(u)}$ and “piggyback-coding!”

- Split $W_d = (W_d^{(c1)}, W_d^{(u)})$ of rates $(2^M_D, \rho - 2^M_D)$

- Sending $W_d^{(c)}$ does not affect weaker receiver!

Sending $W_d^{(c)}$ does not affect weaker receiver!

Joint Cache-Channel Coding gives back Global Caching Gain

\[
p(\text{error}) \to 0 \text{ if: } \frac{\rho - 2^M_D}{F(1 - \delta_1)} + \frac{\rho - 2^M_D}{F(1 - \delta_2)} \leq 1 \quad \text{and} \quad \frac{2\rho - 2^M_D}{F(1 - \delta_2)} \leq 1
\]
Piggyback Coding

- For the phase where we send \((W_{d_1}^{(u)}, W_{d_2}^{(c_1)})\) to both receivers

- Rx 1 already knows \(W_{d_2}^{(c_1)}\) and restricts decoding to corresponding row
 \(\rightarrow\) Transmission of \(W_{d_2}^{(c_1)}\) does not bother Rx 1

codebook of codewords \(X^{n'}(W_{d_1}^{(u)}, W_{d_2}^{(c_1)})\)
Our Example for $\delta_1 = 4/5$ and $\delta_2 = 1/5$ and $M \leq \rho 3D/8$

2. Asymmetric caches $M_1 = 2M$ and $M_2 = 0$ & separate source-channel coding

$$\rho \leq \frac{4}{5} F(1 - \delta_1) + \frac{8}{5} \frac{M}{D}$$

3. Asymmetric caches $M_1 = 2M$ and $M_2 = 0$ & joint cache-channel coding

$$\rho \leq \frac{4}{5} F(1 - \delta_1) + 2 \frac{M}{D}$$
Our Example for $\delta_1 = 4/5$ and $\delta_2 = 1/5$ and $M \leq \rho 3D/8$

1. Symmetric caches $M_1 = M_2 = M$ & coded caching as before & separate source-channel coding

$$\rho \leq \frac{4}{5} F(1 - \delta_1) + \frac{6}{5} \frac{M}{D}$$

2. Asymmetric caches $M_1 = 2M$ and $M_2 = 0$ & separate source-channel coding

$$\rho \leq \frac{4}{5} F(1 - \delta_1) + \frac{8}{5} \frac{M}{D}$$

3. Asymmetric caches $M_1 = 2M$ and $M_2 = 0$ & joint cache-channel coding

$$\rho \leq \frac{4}{5} F(1 - \delta_1) + 2 \frac{M}{D}$$
Our General Joint Cache-Channel Scheme and Cache Design

- Assign larger cache sizes to weaker receivers

- Do Maddah-Ali&Niesen coded caching:
 - Cache submessages to groups of t receivers
 - Deliver x-ors of submessages to $t + 1$ receivers

- For the delivery phase piggyback information to stronger receivers on x-or messages to weaker receivers!

A caching/delivery scheme cannot have $p(\text{error}) \to 0$ as $n \to \infty$, if

$$\frac{\rho - M_1}{F(1 - \delta_1)} + \frac{R - M_2}{1 - \delta_2} \leq 1$$

$$2\rho \leq 2F(1 - \delta_1) + M_1$$

$$2\rho \leq 2F(1 - \delta_2) + M_2$$

$$3\rho \leq F(1 - \delta_1) + F(1 - \delta_2) + M_1 + M_2$$

Achievable and Infeasible Maximum Rates $\rho(M)$

- $K = 2$ users and symmetric cache sizes $M_1 = M$ and $M_2 = 0$
- $\delta_1 = 0.4$ and $\delta_2 = 0.25$
- Maximum rates $\rho(M)$ in bits per channel use
How to Prove the Infeasibility Results

- Need to show: $p(error)$ cannot tend to 0 if one of four bounds violated

Library: Files W_1, W_2 of $n\rho$ bits each

Packet Erasure Broadcast Channel

X^n

\hat{W}_{d1} \hat{W}_{d2}

Cache1 Cache2
How to Prove the Infeasibility Results

- Need to show: $p(error)$ cannot tend to 0 if one of four bounds violated

- Input/receivers a for demand $(d_1 = 1, d_2 = 2)$; input/receivers b for demand $(d_1 = 2, d_2 = 1)$
How to Prove the Infeasibility Results

- Need to show: \(p(\text{error}) \) cannot tend to 0 if one of four bounds violated

- Bound 2: \(2\rho < 2F(1 - \delta_1) + M_1 \)
How to Prove the Infeasibility Results

- Need to show: $p(\text{error})$ cannot tend to 0 if one of four bounds violated

- Bound 4: $3\rho < F(1 - \delta_1) + F(1 - \delta_2) + M_1 + M_2$

Library:

Files W_1, W_2 of $n\rho$ bits each

Diagram:

- X^n_a and X^n_b
- Packet Erasure Broadcast Channel
- $\hat{W}_1^{(1a)}$, $\hat{W}_1^{(2b)}$, $\hat{W}_2^{(2a)}$, $\hat{W}_2^{(1b)}$
Insights/Extensions

- Because of cache-content, joint cache-channel coding beneficial!
 \[\rightarrow \text{even larger global caching gain!} \]

- Piggyback coding idea combines with any previous delivery scheme, in particular for degraded BCs.

- When all rxs have identical demands (which is a priori unknown) joint cache-channel coding based on Tuncel’s virtual binning optimal for delivery
Part 3: the Files Might be Correlated!

- The files are frames of videos, e.g., future interactive videos
 → users can choose angle, screen segments etc...

- Before: Caching creates common message parts for many receivers

- Now: Messages inherently have common parts →
 - Store these common parts in caches → common information!
 - Additional benefits expected!

Questions

- New coding elements?
- New cache designs?
Standard Lossy-Source Coding with Caching

Library:
Files X_1^n, \ldots, X^n_D with $(X_{1,t}, \ldots, X_{D,t}) \sim P_X$ (no popularities)

Caching phase: nM bits $m = \text{caching}(X_1^n, \ldots, X^n_D)$

Delivery phase: nR bits $r = \text{delivery}(X_1^n, \ldots, X^n_D, d)$

Lossy reconstruction: $\hat{X}_d^n(m, r, d)$ s.t. $\forall d: \mathbb{E} \left[\sum_{t=1}^{n} \delta_d(\hat{X}_t, X_{d,t}) \right] \leq \Delta_d$.

Wigger — New Results on Cache-Aided One-to-Many Compression and Communication
Single-User Rate-Distortions-Memory (RDM) Tradeoff

\[R^*(\Delta, M) = \min_{d \in \{1, \ldots, D\}} \max I(X_d; \hat{X}_d | U) \quad \text{where min. over } P_{\hat{X}, U | X} \text{ s.t.} \]

- \(I(X_1, \ldots, X_D; U) \leq M; \) and
- \(\mathbb{E}[\delta_d(\hat{X}_d; X_d)] \leq \Delta_d, \quad \forall d \in \{1, \ldots, D\}. \)

\textbf{Achievability:}

- Caching phase: Index from covering \((X_1^n, \ldots, X_D^n)\) by \(U^n\)
- Delivery phase: Lossily describe \(X_d^n\) under side-info \(U^n\) at tx and rx
Example 1: Independent and Identical Sources

- \(X_1^n, \ldots, X^n_D \) IID according to \(P^n_X \)
- \(\delta_1 = \ldots = \delta_D = \delta \)
- \(\Delta_1 = \ldots = \Delta_D = \Delta \)

Rate-Distortion-Memory Tradeoff

\[
R(\Delta, M) = \max \left\{ 0, \ R_X^*(\Delta) - \frac{M}{D} \right\}
\]

\(\rightarrow \) Compress sources independently and cache first \(\frac{M}{D} \) bits of each description
Demands-Extension of our Lossy Setup: The Gray-Wyner Problem

Library:
Files X^n_1, \ldots, X^n_D with $(X^n_1,t, \ldots, X^n_D,t) \sim P_X$
(no popularities)

Problem solved

Lower bound 1:
- All receivers can cooperate $\rightarrow R_{super}(\Delta, M)$

Lower bound 2:
- D rate-M private links replace comm. link $\rightarrow R_{genie}(\Delta, M)$
Demands-Extension of our Lossy Setup: The Gray-Wyner Problem

Library:
Files X_1^n, \ldots, X_D^n
with $(X_1^t, \ldots, X_D^t) \sim P_X$
(no popularities)

- Problem solved
- Lower bound 1:
 - All receivers can cooperate $\rightarrow R_{super}(\Delta, M)$
 - Tight when M above Wyner common-Info (for R_1, \ldots, R_D unequal)
- Lower bound 2:
 - D rate-M private links replace comm. link $\rightarrow R_{genie}(\Delta, M)$
 - Tight when M below Gács-Körner common-info (for R_1, \ldots, R_D unequal)
Typical Rates-Memory Function for Fixed Distortions

\[R^*(\Delta, M) \]

\[
\max_{d \in \{1, \ldots, D\}} R^*_X(\Delta_d)
\]

- \(R_{\text{genie}} = \max \left\{ 0, \max_{d \in \{1, \ldots, D\}} \left(R^*_X(\Delta_d) - M \right) \right\} \)

- \(R_{\text{super}} = \max \left\{ 0, \max_{d \in \{1, \ldots, D\}} \frac{1}{D} \left(R^*_X(\Delta) - M \right) \right\} \)
Typical Rates-Memory Function for Fixed Distortions

\[
\max_{d \in \{1, \ldots, D\}} R^*_X(\Delta_d)
\]

In lossless, symmetric case:

- \(M_{\text{super}}(\Delta)\) is Wyner common-info \(\rightarrow\) above this store more than Wyner common-info

- \(M_{\text{genie}}(\Delta)\) is Gàcs-Körner comm.-info \(\rightarrow\) below this store part of Gàcs-Körner comm.-info
Two-User Lossy-Source Coding with Caching

Library: Files X_1^n, \ldots, X_D^n with $(X_1, t, \ldots, X_D, t) \sim P_X$ (no popularities)

Caching phase: nM bits $m = \text{caching}(X_1^n, \ldots, X_D^n)$

Delivery phase: nR bits $r = \text{delivery}(X_1^n, \ldots, X_D^n, d_1, d_2)$

Lossy reconstructions $\hat{X}_1^n(m, r, d_1, d_2)$ and $\hat{X}_2^n(r, d_1, d_2)$ s.t. $\forall d_1, d_2$:

$$\mathbb{E} \left[\sum_{t=1}^{n} \delta_{d_1} \left(\hat{X}_{1, t}(m, r, d_1, d_2), X_{d_1, t} \right) \right] \leq \Delta_{d_1},$$

$$\mathbb{E} \left[\sum_{t=1}^{n} \delta_{d_2} \left(\hat{X}_{2, t}(r, d_1, d_2), X_{d_2, t} \right) \right] \leq \Delta_{d_2}.$$
Two-User Rate-Distortions-Memory Tradeoff, Achievability Result

Achievability Result

\[R_{2\text{Users}} \leq \min_{(d_1,d_2)} \max \left\{ I(U, X; \hat{X}_2(d_1, d_2)) + I(X; \hat{X}_1(d_1, d_2)|U, \hat{X}_2(d_1, d_2)), \right. \]
\[\left. I(X; U, \hat{X}_1(d_1, d_2), \hat{X}_2(d_1, d_2)) - M \right\} \]

where minimum over \((U, \hat{X}_1, \hat{X}_2)\) s.t. \(\forall (d_1, d_2):\)

\[\mathbb{E}\left[\delta_{d_1}(\hat{X}_1(d_1, d_2), X_{d_1}) \right] \leq \Delta_{d_1} \quad \text{and} \quad \mathbb{E}\left[\delta_{d_2}(\hat{X}_2,t(d_1, d_2), X_{d_2}) \right] \leq \Delta_{d_2}. \]
Coding Scheme based on Virtual Binning

Our caching problem

- Describe $\hat{X}_2^n(d_2)$ to Rx 2 (and Rx 1)
- Describe $U^n, \hat{X}_1^n(d_1, d_2)$ to Rx 1 which has SI $\hat{X}_2^n(d_2)$
- Store parts of description of U^n into cache

\[\sum_{d_1, d_2} 2^n I(U; X) \text{ seq.} \approx 2^n I(U; \hat{X}_2(d_2=1)) \text{ seq.} \approx 2^n I(U; \hat{X}_2(d_2=D)) \text{ seq.} \]
Converse based on Successive Refinement

Our caching problem

Successive Refinement $\forall (d_1, d_2)$

Demands revealed before caching

Converse Result

$$R_{2\text{Users}} \leq \min_{(d_1, d_2)} \max_{\hat{X}_1, \hat{X}_2} \left\{ I(X; \hat{X}_2(d_1, d_2)), I(X; \hat{X}_1(d_1, d_2), \hat{X}_2(d_1, d_2)) - M \right\}$$

where minimum over $(U, \hat{X}_1, \hat{X}_2)$ s.t. $\forall (d_1, d_2)$:

$$\mathbb{E}\left[\delta_{d_1}(\hat{X}_1(d_1, d_2), X_{d_1}) \right] \leq \Delta_{d_1} \quad \text{and} \quad \mathbb{E}\left[\delta_{d_2}(\hat{X}_2,d_2, t(d_1, d_2), X_{d_2}) \right] \leq \Delta_{d_2}.$$
Bounds Tight in Special Cases:

- If d_1 is fixed or d_2 is fixed
- In lossless case, if $D = 2$ (only two files)
Summary

- In the expanded-demands model, caching and delivery links are equivalent to traditional (complicated) source coding and channel coding problems.
 - Duality between delivery rate R and caching rate M.

- Joint cache-channel coding is required for delivery over a noisy network.
 - Piggyback coding for asymmetric BCs.
 - Brings global caching gain even with only local caches.

- Correlated files store "common informations".
 - Genie-aided and super-user lower bounds can be tight.
 - Two-user setup: need virtual binning because demands a priori unknown.